
Data Transfers between Processes in an SMP
System: Performance Study and Application to MPI

Darius Buntinas Guillaume Mercier William Gropp
Mathematics and Computer Science Division

Argonne National Laboratory
email: {buntinas, mercierg, gropp}@mcs.anl.gov

Abstract— This paper focuses on the transfer of large data
in SMP systems. Achieving good performance for intranode
communication is critical for developing an efficient commu-
nication system, especially in the context of SMP clusters. We
evaluate the performance of five transfer mechanisms: shared-
memory buffers, message queues, the Ptrace system call, kernel
module-based copy, and a high-speed network. We evaluate
each mechanism based on latency, bandwidth, its impact on
application cache usage, and its suitability to support MPI two-
sided and one-sided messages.

I. MOTIVATION AND SCOPE

Designing a communication system tailored for a partic-
ular architecture requires understanding the achievable per-
formance levels of the underlying hardware and software.
Such understanding is key to a more efficient design and
better performance for interprocess communication. Interpro-
cess communication usually falls into two main categories:
communication between processes within an SMP node, and
communication between processes on different nodes. Consid-
erable research has been carried out in the latter case where
communication is involved over various high-performance
networks. Communicating over shared memory is a field of
study that regained popularity with the growing market of SMP
clusters.

In this paper, we focus on the shared-memory case and
analyze five methods of transferring data between processes
on an SMP. We compare their performance based on the usual
metrics of latency and throughput. We also consider three
other important factors that have been generally overlooked in
the past: scalability; the effects of the data transfer operation
on processor caches, specifically application data located in
the cache; and the setup time required to use the mechanism.
We focus on mechanisms available on Intel Xeon-based SMP
nodes; however, we believe that similar mechanisms can be
used on other architectures with similar results.

The structure of this paper is as follows. In Section II,
we describe the data transfer mechanisms that we considered.
In Section III we present our performance evaluation of the
mechanisms with regard to the different metrics chosen. In
Section IV we discuss the suitability of the different mecha-
nisms to support large MPI two-sided messages and one-sided

This work was supported by the Mathematical, Information, and Compu-
tational Sciences Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of Energy, under
Contract W-31-109-ENG-38.

messages. In Section V we conclude this paper and discuss
future work.

II. TRANSFER TECHNIQUES CONSIDERED

In this paper, we analyze mechanisms for transferring data
between processes on an SMP. We consider only mechanisms
appropriate for implementing MPI. Such mechanisms cannot
have restrictions on where the source or destination buffers
can be located in a process’s address space. For example, a
particularly efficient transfer method implemented at the kernel
could manipulate page tables and transfer pages from the page
table of the source process to that of the destination process,
resulting in a true zero-copy transfer. Such a mechanism, while
efficient, would require the source and destination buffers to
have at least the same alignment, if not page alignment, and
would therefore be beyond the scope of this paper.

We analyze five data transfer mechanisms. These are (1)
shared buffers, (2) message queues, (3) the Ptrace system call,
(4) kernel-module based copy, and (5) a network interface
controller. Below we describe these mechanisms in more
detail.

A. Copying through Shared Buffers
The most obvious technique is to have the processes copy

through a buffer located in a shared-memory region. First,
the processes allocate a shared-memory region between them-
selves. The mechanism is then straightforward: the sending
process copies the data from the source buffer into the shared
buffer, and the receiving process copies the data from the
shared buffer into its final location in the destination buffer.
Synchronization is needed to ensure that one process doesn’t
read the buffer before the other process has finished writing,
and vice versa. We used a flag associated with the shared
buffer to indicate whether it was full or empty.

This approach, however, has some limitations in the case of
large data. If a single buffer is allocated to contain the entire
data to be transferred, transferring large data has a negative
impact on available memory. Also, the receiving process must
wait until the whole message has been copied into the shared
buffer before it can start to copy the data out. These drawbacks
can be overcome by using a pair of such smaller buffers and
switching between them. While one process is copying out of
Buffer 0, the other process is copying into Buffer 1; then they
switch. This double-buffered approach can reduce the latency
because the receiving process doesn’t have to wait for the



sending process to finish copying whole message before it can
start copying. Moreover, such an approach can improve the
throughput because two processors are transferring the data in
parallel. The performance of this method depends on the size
of the buffers. If the buffers are too small, the throughput will
suffer because the processes have to synchronize more often
and memory copy functions are not as efficient for moving
small data as they are for moving large data. If the buffers are
too large, then one does not get the benefit of double-buffering
when transferring small- and medium-sized data. The optimal
size of the buffers can be determined empirically.

In order to avoid the cost of setting up the shared-memory
region each time large data has to be transferred, such shared
buffers can be preallocated between each pair of processes.
This approach requires O(P 2) sets of buffers, for P proces-
sors. This may be acceptable for a small SMP node, but it does
not scale for large SMPs. For large SMPs a method for creating
and destroying shared buffers dynamically can be used.

In the rest of this paper we refer to this mechanism as the
shared buffer mechanism.

B. Copying through Message Queues
The scalability issues raised in the previous section can

be avoided by organizing the shared buffers in a more so-
phisticated fashion. The design we propose is the following.
Each process has a pair of queues located in a shared-memory
region accessible by all processes. The elements of these
queues, called cells, are fixed-size buffers. The number of
cells in the queues is also fixed and independent of the
total number of communicating processes. One of the queues,
called the free queue, contains unused cells; the other queue,
called the receive queue, contains cells, enqueued by other
processes, that hold the data being transferred. Figure 1 depicts
a simple send-receive sequence involving three processes,
where Processes 0 and 2 send messages to Process 1.

A send transaction, as illustrated in Figure 1, involves three
steps:

1s) The sending process dequeues a cell from its free queue.
2s) The process copies a cell’s worth of data from the source

buffer into the cell.
3s) The process then enqueues the cell on the receive queue

of the receiving process.

Recv Free 
Free Recv

Free 

Proc 1

Proc 0 Proc 2

3r

2r

Recv
3s

1r

1s

2s

Fig. 1. Sending and receiving with lock-free shared message queues.

A receive transaction also involves three steps:
1r) The receiving process dequeues a cell from its receive

queue.
2r) The process copies the data from the cell into the

destination buffer.
3r) The process then enqueues the cell on the free queue of

the sending process.
The queues are lock-free queues implemented by using

atomic operations such as Compare-and-Swap and Swap, as
described in [1]. What makes this method scalable is that only
one pair of queues is needed per process, regardless of how
many processes it may communicate with. Hence, the queues
can be preallocated at initialization time on any size system.
Furthermore, the fact that only one memory location has to be
polled regardless of the number of processes makes checking
for new messages also scalable. In order to receive a message
from any process, a process simply has to check whether its
receive queue is not empty. This lock-free queue system avoids
the use of costly locking mechanisms using semaphores or
mutexes. If the data to be transferred is larger than the size of
a cell, it is divided into chunks, where each one is transferred
in a separate cell. This procedure results in additional overhead
because multiple queue operations will be performed to send
a long message. The cost, however, is offset by the pipelining
effect that comes from dividing up the data.

In the rest of this paper we refer to this mechanism as the
message queue mechanism.

C. Copying with the Ptrace System Call
The shared buffers and message queue methods require the

data to be copied twice: once from the source buffer into
the shared buffer or cell, and once from the shared buffer
or queue to the destination buffer. In order to eliminate one
of those copies, a process would need to be able to directly
access the other process’s address space. One approach is
to use the ptrace mechanism, which is designed to support
debuggers. The operations supported by the ptrace system
call depend on the architecture and operating system, but
typically a mechanism is provided to allow the controlling
process to attach to another process and access the memory of
that process. On Linux 2.6, after attaching to another process,
the controlling process opens the memory file in the /proc
filesystem, of the other process and uses the read() system
call to copy data out of the process’s memory. Write access
through the /proc filesystem, however, is not supported in
Linux 2.6. The steps to transfer data between processes using
ptrace are listed below.

1) The destination process takes control of the source
process by issuing a call to ptrace with the PTRACE
ATTACH parameter.

2) The destination process then opens the
/proc/pid/mem file corresponding to the source
process and reads the data using the read system call.

3) The destination process then releases the source process
with another call to ptrace, with the PTRACE DETACH
parameter.



This technique has the advantages that it eliminates a copy
and does not require any action from the remote process,
making it a one-sided copy operation. However, this technique
uses a system call that increases the latency of the transfer.
Also, the ptrace system call stops the process that is being
attached to. Hence, while a data transfer is being performed,
the source process is frozen and cannot do any useful work.

In the rest of this paper we refer to this mechanism as the
Ptrace mechanism.

D. Copying Using a Kernel Module (Kaput)
Features in recent Linux kernels allow a kernel module to

map the pages of arbitrary user processes into kernel memory.
Thus, a kernel module could directly copy data from one
process’s address space to another. Several implementations
of this method exist. One is LiMIC [2], which is implemented
on Linux 2.4. Another is Kaput [3], which is implemented on
Linux 2.6. We evaluated Kaput because the source code was
available to us, but we expect LiMIC to perform similarly.

In order for a process to access a memory region of another
process using Kaput, that memory region must be registered
with Kaput. By registering the memory region, the Kaput
module stores the information about the process’s pages that it
will need when it maps those pages into kernel space later. The
registration operation returns a token to the user application,
which is used by the remote process to identify the registered
memory region.

Once the memory has been registered, a process that has
the token can perform a put or get between its local memory
and the memory region associated with the token.

Using a kernel module in this way has the same advantages
of the Ptrace mechanism, namely, eliminating a memory copy
and being a one-sided operation. The kernel module method
has the additional advantages of allowing data to be written
as well as read and of not requiring that the remote process
be frozen or otherwise interrupted during the transfer. This
method does, however, still have the overhead of a system call,
which the shared buffer and message queue methods avoid.

In the rest of this paper we refer to this mechanism as the
Kaput mechanism.

E. Copying Using a NIC
The last solution we study is to perform the copy by

using a network interface controller (NIC). Most modern user-
level network libraries support remote direct memory access
(RDMA) operations, such as put or get, which allow one
process to transfer data to and from another process’s memory.
By using a NIC to transfer the data, once the operation has
been initiated, the host processor is not involved in the transfer.
This method is also one-sided. One large benefit of using the
NIC is that the processor’s cache is not affected. Normally,
when the host processor performs a copy operation, the copy
operation replaces whatever was in the processor’s cache
before the operation. This approach can severely increase the
cache misses that the application sees. By using the NIC to
transfer the data, rather than the processor, the processor’s
caches remain intact.

Latency and bandwidth performance can be a drawback to
using this method. Because the data is going out over the I/O
bus to the NIC and back again (and, depending on the specific
network, even possibly going out over the network and back
again), the latency of copying data using the NIC may be
considerably higher than that of the other methods. Similarly,
bandwidth may also suffer because the I/O bus and network
are typically slower than the system bus.

These drawbacks may be overcome, however, by the fact
that there is no host involvement once the operation has been
initiated. The data transfer operation can be scheduled so it can
be overlapped with other useful computation, thereby hiding
the latency of the operation.

In the rest of this paper we refer to this mechanism as the
NIC-copy mechanism.

III. PERFORMANCE COMPARISONS

In this section, we compare the performance of the data
transfer mechanisms described above. We benchmarked sev-
eral factors: latency and throughput, the cost for setting up and
tearing down the system, and the effects on the L2 cache. We
feel that these are key characteristics to be taken into account
when developing a high-performance communication system.
We start by describing our benchmark infrastructure, evaluat-
ing different memory copy mechanisms, and determining the
optimal size of shared buffers and message queue elements.
Then we evaluate each mechanism based on the cited factors.

Our testbed consists of a dual-SMP 2 GHz Xeon node with
4 GB of memory. The Xeon processors have a 512 KB 8-way
associative L2 cache with 64-byte cache lines. The OS is Linux
2.6.10. For the NIC-copy mechanism, we used a Myrinet
2000 [4] “PCI64C” NIC connected to a 32-port switch using
the GM [5] message-passing system, version 2.0.21. The NIC
is installed in a 64-bit 66 MHz PCI slot. In order to measure
L2 cache misses, we used the PAPI [6] software library that
offers a convenient interface to gather the results. In this paper,
we consider one megabyte as 1024 × 1024 bytes.
A. A Common Benchmarking Infrastructure

To ensure fairness and accuracy in our evaluation of the
transfer mechanisms, we developed a common benchmarking
infrastructure that allows us to integrate and test the mecha-
nisms in a modular and easy way. The infrastructure is based
on a flexible interface so we can implement and evaluate the
different transfer mechanisms with one generic test program.
This test program has the interface shown below. A module
was written for each transfer mechanism that implements each
of these functions.

– init(): initializes the transfer method
– finalize(): finalizes the transfer method
– register mem(): informs the transfer mechanism

module about the memory that will be used for the
transfer

– deregister mem(): informs the transfer mechanism
module that the memory will no longer be used for
transfers

– copy local(): performs the local portion of the mem-
ory transfer operation on the local process



– copy remote(): performs the remote portion of the
memory transfer operation on the remote process. For
one-sided transfer mechanisms, such as NIC-transfer, this
is an empty function.

The functions copy local() and copy remote() per-
form the data transfer. For the two-sided transfer methods,
shared buffer and message queue, the remote process calls
copy remote(), which copies the data from the source
buffer into either the shared buffer or queue. The local
process calls copy local(), which copies the data from
the shared buffer or queue into the destination buffer. For
the one-sided transfer methods Ptrace, Kaput, and NIC-copy,
the transfer operation is performed only by the local process
in copy local(), while the copy remote() function is
an empty function. A fast shared-memory barrier is used to
synchronize the processes before each iteration to ensure that
one process doesn’t start the next operation before the other
process is finished with the current one. Table I summarizes
how these functions are implemented in the benchmark pro-
gram.

TABLE I
IMPLEMENTATIONS OF copy local() AND copy remote() FOR THE

VARIOUS TRANSFER MECHANISMS

copy local() copy remote()
Shared buffer copy out of shared buf copy into shared buf
Message queue copy out of queue copy into queue
Ptrace attach and read()
Kaput kaput put() or get()
NIC-copy gm put() or get()

For all the tests, we took an average of 1,000 iterations.
One common problem with performing memory transfer tests
repeatedly is that the source and destination buffers are loaded
into the cache on the first iteration and then all subsequent
iterations access the buffers from the cache. This approach
skews the results by making the performance seem higher than
it should be. To reduce this effect, for each iteration we shift
the source and destination buffers by a cache line and reuse
a buffer only after we have shifted more than eight times the
L2 cache size.

B. Determining the Optimal Memory Copy Routine
In the shared buffer and message queue transfer mecha-

nisms, the data is copied into and out of the shared-memory
buffer or queue by using a memory copy operation. The most
common implementation of this operation is to use the libc
memcpy() function. However, this may not be the most
efficient method. To find a better implementation, we evaluated
libc memcpy() and two other memory copy implementations:
one implemented by using the IA32 string copy assembly
instruction, and one implemented by using MMX nontemporal
move instructions. We used the MMX copy implementation
from the MP Lite [7] source code.

Figure 2 shows the results of our evaluation. For smaller
messages, up to about 2 KB, the implementation using the
assembly string copy instruction (labeled asm copy) performs
better than the other two. Beyond 2 KB, the MMX copy

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

1M32K1K321

Ba
nd

wi
dt

h 
(M

Bp
s)

Data length (Byte)

MMX copy
asm copy
memcpy

Fig. 2. Bandwidth of three memory copy implementations.

implementation performs much better than the others. For our
evaluation of the shared buffer and message queue data transfer
mechanisms, we used asm copy to copy data up to 2 KB and
MMX copy for larger data.

C. Determining the Optimal Shared Buffer and Queue Ele-
ment Size

To determine the optimal size of the buffer for the shared
buffer mechanism and the size of queue elements for the
message queue mechanism, we measured the bandwidth of
the mechanisms for transferring 4 MB of data while varying
the buffer and queue element size. Figure 3 shows that, for
the shared buffer mechanism, using an 8 KB buffer gives the
highest throughput. That is, at 8 KB, the pipeline between the
two processors copying in and out is most efficient. For the
message queue mechanism, however, the throughput increases
with the queue element size, even up to 1 MB. This result
is most likely due to the overhead of the queuing operation:
there are fewer queuing operations per transfer operation as

 250

 300

 350

 400

 450

 500

 550

1M256K64K16K4K1K

Ba
nd

wi
dt

h 
(M

Bp
s)

Size of copy buffer or queue element (Bytes)

Shared buffer
Message queue

Fig. 3. Effects of copy buffer size and queue element size on the performance
of the shared buffer and message queue mechanisms.



the elements get larger, so larger queue elements give better
performance.

For the remaining evaluations, we used 8 KB buffers for the
shared buffer mechanism and 32 KB queue elements for the
message queue mechanism. We chose 32 KB queue elements
rather than larger ones because, given the memory needed to
implement a queue with a reasonable number of elements, it
would be unrealistic to implement a queue with 1 MB or larger
elements. Also, 32 KB is around the “knee” of the curve, and
so the benefit of using larger queue elements decreases with
larger sizes. The optimal values will vary depending on the
specific hardware and software being used.

D. Latency and Bandwidth
Using the benchmarking infrastructure described above, we

evaluated each of the memory transfer mechanisms. Table II
and Figure 4 show the results of these tests for both latency
and bandwidth, respectively.

TABLE II
ONE-BYTE LATENCIES FOR THE DATA TRANSFER MECHANISMS

Latency (µs)
Shared buffer 1.5
Message queue 3.3
Kaput put 2.1
Kaput get 2.1
NIC-copy put 11.6
NIC-copy get 14.3
Ptrace 20.2

We can see that three mechanisms offer low latencies:
shared buffer, message queue, and Kaput. Shared buffer is the
most efficient, but Kaput also performs well, despite the fact
that system calls are necessary to transfer the data. NIC-copy
performance is an order of magnitude higher than the previous
solutions, but this is a characteristic of the specific hardware
we used. The mechanism featuring the highest latency is
Ptrace. The penalty comes from the system-call overhead and
from the fact that the target process (from which the data is
read) needs to be stopped before the transfer can be performed.

Figure 4 shows the bandwidth comparison. We see that the
NIC-copy mechanism, whether using get or put, has the lowest
throughput. This is because of the low bandwidth of the PCI
bus compared with the system bus. The Ptrace mechanism
performs better than the NIC-copy mechanism for transfers
larger than about 4 KB. Message queues perform better than
the previous two, up to about 512 KB; then Ptrace performs
slightly better. The best performance is seen by the Kaput
and shared buffer mechanisms. The shared buffer mechanism
performs slightly better than the kernel copy mechanisms for
data larger than about 32 KB.

E. Transfer Setup and Teardown Overhead
Each of these mechanisms requires some setup before the

transfer can take place. The results shown above do not include
this overhead. Because this overhead can be significant, it
would be desirable to perform several transfers per setup. For
example, in MPI one-sided operations, the transfer mechanism

 0

 100

 200

 300

 400

 500

 600

1M32K1K321

Ba
nd

wi
dt

h 
(M

Bp
s)

Data length (Bytes)

Shared buffer
Message queue

Kaput put
Kaput get

NIC-copy put
NIC-copy get

Ptrace

Fig. 4. Comparing the bandwidth of the data transfer mechanisms.

can be set up once when the window is created; then, many
one-sided operations can be performed in that window.

Table III shows the setup and teardown overhead for each
mechanism and indicates whether the setup performed is
specific to a memory location. When the setup is not specific
to a memory region, the setup can be performed once, and
data located anywhere in a process’s address space can be
transferred. If the setup is specific to a memory region, only
data located in that region can be transferred. For example,
when the shared buffer mechanism is set up, it is not specific
to any memory region, while the setup for the NIC-copy and
Kaput mechanisms do depend on the memory region because
they require the specific memory region to be registered before
data can be transferred into or out of it.

TABLE III
TRANSFER SETUP AND TEARDOWN OVERHEAD

Setup (µs) Teardown (µs) Region specific
Shared buffer 10.9 5.1 No
Message queue 10.9 5.1 No
Kaput 2.8 1.4 Yes
NIC-copy 4.5 212.4 Yes
Ptrace 0.0 0.0 No

The overhead for the shared buffer and the message queue
mechanisms are the same. A System V shared-memory seg-
ment is created and attached to. Then the segment is marked
as destroyed, so that once the last process detaches from it,
the segment is actually destroyed. Teardown consists of simply
detaching from the region. For the Kaput mechanism the setup
consists of registering the target buffer, and the teardown
consists of deregistering the memory. Similarly, for the NIC-
copy mechanism, the memory just needs to be registered
and deregistered. For Ptrace there is no setup or teardown
overhead.

We can see that the shared buffer and message queue
mechanisms have high setup and teardown costs. However,
these can be set up once when the communication library
is initialized, since the setup is not specific to the source or



 0

 500

 1000

 1500

 2000

 2500

1M32K1K

Ca
ch

e 
m

iss
es

Data length (Bytes)

Shared buffer
Message queue

Kaput put
Kaput get

NIC-copy put
NIC-copy get

Ptrace

(a) Destination process

 0

 500

 1000

 1500

 2000

 2500

1M32K1K

Ca
ch

e 
m

iss
es

Data length (Bytes)

Shared buffer
Message queue

Kaput put
Kaput get

NIC-copy put
NIC-copy get

Ptrace

(b) Source process

Fig. 5. Effects of data transfer operations on application data in L2 cache.

destination buffers of a message. For large shared-memory
systems, creating a queue or copy buffer between every pair
of processes at initialization time may not be scalable. In this
case they may have to be created dynamically. The setup for
the Kaput and NIC-copy mechanisms is specific to the source
and destination buffers and so must be performed each time a
different source and destination buffer is used. The setup and
teardown overheads for Kaput depend on the implementation
of the underlying mechanism. While the Kaput overheads are
quite low, an implementation that does not require per buffer
registration and thus has no overhead is conceivable. The high
overhead for the NIC-copy teardown shown in the table is a
characteristic of the GM memory deregistration operation and
may be smaller with other communication libraries.

F. L2 Cache Disturbance
Utilizing the cache effectively is central for achieving good

performance for the application. We therefore want to examine
the effects the data transfer mechanisms may have on the
application’s data stored in the cache. To do so, we allocated
a buffer to represent the user data, and filled it. Next we
performed a data transfer operation of some data outside of
the user buffer, and checked how many L2 cache misses were
encountered when reading the user buffer. In this test, our
user buffer was 256 KB, half the size of the L2 cache on the
machines we were using. Figure 5 shows the number of cache
misses encountered on the destination and source nodes. Note
that for the one-sided mechanisms, the source process is the
initiator of the put operation, and the destination process is
the initiator of the get operation.

We see in these graphs that for the NIC-copy mechanism,
the impact on the cache is low on both the source and destina-
tion processes, whereas for the other mechanisms the impact
on the cache is high on at least one of the processes. For the
shared buffer mechanism the cache impact on the destination
process is low, only around 225 cache misses, whereas at
the source process, the impact is very high, over 2,050 cache
misses. The reason is that the optimized memory copy function

uses nontemporal move instructions, which bypass the cache,
to write the data to the destination buffer. No nontemporal
move instructions are available that read from memory. In the
shared-memory mechanism, the source process reads the entire
source buffer, thus causing cache lines to be allocated and
the application’s cache lines to be evicted. On the destination
side, the process reads only from two 8 KB copy buffers and
writes to the destination buffer. Because of the nontemporal
move instructions, cache lines are not allocated when writing
to the destination buffers, and so the application’s cache lines
are preserved.

The message queue mechanism sees a high cache impact
on both the source and destination processes because the
destination must read from many queue elements. Each time
data is read from a new queue element, more cache lines are
allocated, and more application cache lines are evicted. The
effects of this could be reduced if the same queue elements
were reused by the source after being freed by the destination,
rather than using a new queue element each time.

For the Kaput mechanism, while there is a large impact on
the cache at the initiating process, there is almost no impact on
the cache at the target process. The reason is that the Kaput
put or get operation is performed only on the processor of
the initiator process, so only the cache on that processor is
affected. The Ptrace mechanism has a high cache impact on
the cache at the initiating process and a moderate impact (just
over 1,060 cache misses) on the cache at the target process.
It is unclear why the cache at the target process is affected.
Table IV summarizes these results.

IV. SUITABILITY FOR USE IN MPI IMPLEMENTATIONS

In this section, we discuss the suitability of the mechanisms
for supporting MPI operations [8], [9]. Specifically, we exam-
ine large MPI two-sided messages using a rendezvous protocol
and MPI one-sided messages. Since this paper concentrates on
transferring large data, we do not examine short MPI two-sided
messages. In this analysis we assume that there exists a shared
queue between the processes that is used for small messages.



TABLE IV
IMPACT ON APPLICATION CACHE BY THE DATA TRANSFER MECHANISMS

AT THE SOURCE AND DESTINATION PROCESSES

Source Destination
Shared buffer High Low
Message queue High High
Kaput put High Low
Kaput get Low High
NIC-copy put Low Low
NIC-copy get Low Low
Ptrace Medium High

A. Large MPI Two-Sided Communication

Large MPI messages are typically transferred by using
a rendezvous protocol, where the sender and receiver first
exchange small messages to match the send and receive
requests and then transfer the actual data of the message. This
approach reduces the amount of data that has to be buffered
at the receiver for messages that don’t yet have a matching
receive request.

Any of the mechanisms could be used to transfer the mes-
sage data in the rendezvous protocol. However, the advantage
to using one of the one-sided mechanisms Kaput, NIC-copy,
or Ptrace is that less synchronization is required between the
processes, and there can be more overlap of computation
and communication. If nonblocking MPI send and receive
operations are implemented by using a one-sided transfer
mechanism, then once the send and receive requests have
been matched, one side initiates the transfer, and there is no
need to synchronize with the other process except to notify it
when the transfer has completed. Furthermore, the operation
can be overlapped with computation on the remote side when
using the kernel copy mechanism and on both sides when
using the NIC-copy mechanisms. This approach leads to better
CPU utilization. Among these methods the Kaput mechanism
provides the highest throughput, but it does have a large impact
on the cache at the initiating process. If cache impact is more
of a concern, or if the transfer can be scheduled in such a way
to hide the latency of the operation, the NIC-copy mechanism
would be the best choice.

One factor that needs to be considered for the one-sided
mechanisms is the setup and teardown times. The setup for the
Kaput and NIC-copy mechanisms is memory region specific
and so requires that the source and destination buffers be
registered before the data can be transferred. This process
adds to the transfer time 2.8 µs for Kaput and 4.5 µs for
NIC-copy. Once the transfer has completed, the buffers can
be deregistered. This is only 1.4 µs for Kaput but is 212.4 µs
for the NIC-copy mechanism. In order to reduce the effects of
this overhead, deregistration can be deferred until the amount
of registered memory exceeds a threshold, at which time
all of the unused buffers can be deregistered at once. In
addition, a registration cache can be used along with delayed
deregistration. Before registering a page, the process checks
the registration cache to see whether the page has already been
registered.

The shared buffer and message queue mechanisms can
also be used even with nonblocking MPI sends and receives
because each process will eventually have to wait for the op-
eration to complete. At that time both processes are available
to perform the transfer operation. If the SMP node has a
small number of processors, a copy buffer can be set up at
initialization time between each pair of processes. The shared
buffer can then be used any time large data needs to be
transferred. In this case, this mechanism would give the best
throughput and the least cache impact of all of the methods
except for NIC-copy.

B. MPI One-Sided Communication
In contrast to MPI two-sided messages where the sender

specifies the source buffer and the receiver specifies the
destination buffer, in an MPI one-sided operation one pro-
cess specifies both the source and destination buffers. Before
performing one-sided operations, each target process defines
a local window describing the memory region on which one-
sided operations can be performed. One-sided operations are
initiated by a process during its access epoch. Operations
initiated during an epoch are not guaranteed to complete,
either on the initiator or at the target, until after the epoch.
Specifically, the results of a put operation are not necessarily
visible at the target process, and the results of a get operation
are not necessarily visible at the initiating process, until after
the epoch. MPI provides two modes, active and passive, that
define how access epochs are started and completed.

In active mode, both the initiating process and target process
must call specific MPI functions to start and complete an
epoch. Note that the MPI standard does not require that
any one-sided operations complete until after the epoch ends.
Hence, the implementation can delay the transfer of the data
until the target process calls the function to end the epoch. At
that time both sides can be actively involved in the transfer of
the data.

In passive mode, however, only the initiating process needs
to make calls to start and complete an epoch. The target
process is not required to make any MPI function calls in order
to start or end an epoch. Hence, the implementation cannot
depend on the target process to be involved in the transfer.
However, the MPI standard does allow an implementation
to require that the memory used for passive more one-sided
operations be allocated using a special allocation function
MPI Alloc Mem().

Because in active mode the implementation can count on
both the initiator and target processes to be involved in the
actual transfer of the data, the situation is essentially the same
as the two-sided rendezvous case, except that the buffers need
be registered only once when the window for the one-sided
operations is opened, and deregistered only when the window
is closed. This approach allows the cost of the registration and
deregistration to be amortized over many one-sided operations.

In passive mode we cannot expect the target node to
participate in the transfer unless a separate thread or interrupt
context is used at the target process. If a separate thread or
interrupt is used, both the initiator and target processes can



TABLE V
SUMMARY OF CHARACTERISTICS OF EACH DATA TRANSFER MECHANISM

MPI Two-Sided MPI One-Sided
Latency Throughput Setup Teardown Cache Impact Can Overlap Per Msg. Active Passive

(µs) (MBps) (µs) (µs) (source, dest.) Computation Overhead Mode Mode
Shared buffer 1.5 513.5 10.9 5.1 (High, Low) No No Yes with thread
Message queue 3.3 437.1 10.9 5.1 (High, High) No No Yes with thread
Kaput put 2.1 495.5 2.8 1.4 (High, Low) Yes Yes Yes Yes
Kaput get 2.1 500.3 2.8 1.4 (Low, High) Yes Yes Yes Yes
NIC-copy put 11.6 227.1 4.5 212.4 (Low, Low) Yes Yes Yes Yes
NIC-copy get 14.3 171.7 4.5 212.4 (Low, Low) Yes Yes Yes Yes
Ptrace 20.2 460.0 0.0 0.0 (Medium, High) No No Yes with thread

participate in the transfer so the situation is similar to the active
mode case. However, using interrupts to initiate data transfers
incurs high latency for an OS context switch, and a separate
thread polling for incoming one-sided messages wastes CPU
time, making these not attractive options for implementing
MPI one-sided operations.

If a thread or interrupt context is not used, only the one-
sided transfer methods Kaput and NIC-copy can be used to
transfer the data. Without a separate thread or interrupt context,
these mechanisms are the only way to perform MPI one-sided
operations, so the mechanisms must be used to transfer small
messages as well as large messages. NIC-copy has high small-
message latency, over 10 µs, making it not ideal for small
message transfers. The Kaput mechanism, which has a small
message latency of around 2 µs, would be preferable in this
case. Note that because Ptrace can transfer data only from the
target to the initiating process, it cannot be used to support
active mode without a separate thread or interrupt context.

An efficient method for implementing passive mode, which
may not be appropriate for all applications, is to make the
memory allocated by MPI Alloc Mem() sharable, by cre-
ating a shared-memory region or mapping a local file. Then
when one-sided operations are to be used, this memory created
at the target process can be attached to or mapped into the
initiator’s address space. The initiator of the one-sided oper-
ations can then directly access the target process’s memory
using loads, stores, or optimized memory copy functions. The
overhead of making the memory sharable is relatively high,
10.9 µs to allocate the memory and 5.1 µs to free it, and
this overhead must be incurred for every window allocated.
Furthermore, some applications may use MPI Alloc Mem()
as a general memory allocation function, not just to allocate
memory to be used for windows. It would be undesirable to
incur this overhead each time memory is allocated. But if an
application uses MPI Alloc Mem() only for memory used
for windows, and the number of allocations and deallocations
is low compared to the number of one-sided operations, the
overhead can be amortized.

V. DISCUSSION AND FUTURE WORK

In this paper, we have described five mechanisms for
transferring data between processes in an SMP machine and
evaluated them based on bandwidth, latency, setup costs, and
their impact on the application’s cache. Table V summarizes
the results of our evaluation.

We note that not all mechanisms may be available in all
environments. For instance, users typically would not be able
to load a kernel module for the Kaput mechanism, and the
machine may not have a high-performance user-level network.
The Ptrace mechanism should be available on IA32 machines
with a recent version of Linux; however, it’s not clear whether
this feature of the ptrace system call will be supported in
the future. The shared buffer and message queue mechanisms
should be available on any machine, and these mechanisms
give relatively good performance.

The NIC-copy mechanism we analyzed in this paper was
performed with a NIC that is a few years old. Faster NICs
and communication subsystems, such as Myricom’s MX [10],
can provide up to 495 MBps bandwidth and latency down
to 2.6 µs [11]. Such networks would make the NIC-copy
mechanism perform just as well as the shared buffer and Kaput
mechanisms with the added benefits of a one-sided mechanism
and low cache impact.

Future work in this area would be to expand the study to
other workstation architectures, such as X86 64, Sparcs, or
G5s, as well as to large shared-memory machines.

REFERENCES

[1] D. Buntinas, G. Mercier, and W. Gropp, “The design and evaluation
of Nemesis, a scalable low-latency message-passing communication
subsystem,” in Proceedings of International Symposium on Cluster
Computing and the Grid 2006 (CCGRID ’06), May 2006.

[2] H.-W. Jin, S. Sur, L. Chai, and D. K. Panda, “LiMIC: Support for high-
performance MPI intra-node communication on Linux cluster,” in 2005
International Conference on Parallel Processing (ICPP’05), 2005, pp.
184–191.

[3] P. Carns, “Kaput,” July 2004, a kernel module for copying data between
process.

[4] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz,
J. Seizovic, and W. Su, “Myrinet - A gigabit per second local area
network,” in IEEE Micro, February 1995, pp. 29–36.

[5] Myricom, “Myricom GM Myrinet software and documentation,” http://
www.myri.com/scs/GM/doc/gm toc.html, 2000.

[6] S. Browne, C. Deane, G. Ho, and P. Mucci, “PAPI: A portable interface
to hardware performance counters,” in Proceedings of Department of
Defense HPCMP Users Group Conference, Monterey, California, 1999.

[7] D. Turner, “MP Lite: A lightweight message-passing library,” http:
//www.scl.ameslab.gov/Projects/MP Lite/.

[8] MPI: A Message-Passing Interface Standard, Message Passing Interface
Forum, March 1994.

[9] Message Passing Interface Forum, “MPI-2: Extensions to the
message-passing interface,” http://www.mpi-forum.org/docs/mpi-20.ps,
July 1997.

[10] “MX: Myrinet Express,” http://www.myri.com/scs/download-mx.html.
[11] “Myrinet performance measurements,” http://www.myri.com/myrinet/

performance/.


